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Abstract

Presently there exist several hundred papers on so!called {stochastic _nite element technique| but extremely
few closed!form solutions are available for meaningful comparison[ This paper intends to _ll this huge gap[

This study deals with deformation of deterministic beams or stochastic beams subjected to random
excitation[ Exact solutions are formulated for four di}erent classes of problems[ These solutions can serve
as benchmark solutions to be utilized for assessing the performance of various approximate\ analytical or
numerical techniques[ Þ 0888 Elsevier Science Ltd[ All rights reserved[

0[ Introduction

Exact solutions for the bending of deterministic beams under random loads were treated by
Lomakin "0885#\ Rzhanitsyn "0866\ 0867# and Elishako} "0872#[ Exact solutions for beams with
stochastic sti}ness were studied by Ko�ylu�og³lu et al[ "0883# and Elishako} et al[ "0884#[ Elishako}
et al[ "0884# treated stochastic beams under deterministic excitation with arbitrary covariance
function of the stochastic ~exibility\ whereas Ko�ylu�og³lu et al[ "0883# considered a case of both
loading and sti}ness being stochastic[ The latter paper used the concept of the Green|s function
and the spatial spectral densities\ whereas the former contained a correlation analysis[

Formulation of Ko�ylu�og³lu et al[ is convenient when the random ~exibility is given in terms of
the spatial spectral density which is identically vanishing outside some region of spatial frequencies[
In other cases\ the correlation analysis performed by Elishako} et al[ "0884# appears to be
advantageous[

Here we present derivation for the probabilistic characteristics of the beam|s bending moment

� Corresponding author[ E!mail] nicolaÝmaestrale[unime[it
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and displacement through _rst establishing stochastic di}erential equations\ governing the beam|s
displacement[ The treatment necessitates knowledge of characteristics of deterministic or random
~exibility throughout analysis\ rather than those of sti}ness[ Following special cases are considered]
"a# deterministic beam under random loading represented as a random _eld^ "b# stochastic beam
with ~exibility depending on a random variable subjected to a load treated as a random _eld^ "c#
beam with random ~exibility represented as a random _eld subjected to a random load depending
on a random variable\ and\ _nally\ "d# a stochastic beam subjected to a load with both ~exibility
and load treated as random _elds[ It is shown that the previous analyses by Rzhanitsyn "0867#
and Elishako} et al[ "0844# are particular cases of the present formulation[ Most importantly\ the
nontrivial examples presented could be used for meaningful comparison of the FEM|s stochastic
version with closed!form solutions developed in the present paper[

1[ Deterministic beam under random load represented as a random _eld

The _eld of bending moment m"x# of a statically determined BeurnoulliÐEuler beam of length
L\ subject to distributed load q"x# satis_es the following di}erential equation]

d1m"x#

dx1
� q"x# "0#

Assume that the load q"x# is a random _eld with a given mean and covariance function[ By
applying expectation operation to eqn "0#\ we obtain

d1m¹ "x#

dx1
� q¹ "x# "1#

where m¹ "x# � Eðm"x#Ł is the mean function of the bending moment m"x#\ and q¹ "x# � EðqŁ is the
mean function of the load[ Subtracting eqn "1# from eqn "0# and multiplying the resulting equation
by its counterpart that is evaluated at the cross!section y\ we obtain

d1 ðm"x#−m¹ "x#Ł

dx1

d1 ðm"y#−m¹ "y#Ł

dy1
� ðq"x#−q¹ "x#Ł ðq"y#−q¹ "y#Ł "2#

Applying expectation operation to eqn "2#\ we arrive at the governing equation for the covariance
function of bending moment

13Cm"x\ y#

1x1 1y1
� Cq"x\ y# "3#

where Cm"x\ y# and Cq"x\ y# are\ respectively\ covariance function of bending moment and load]

Cm"x\ y# � E"ðm"x#−m¹ "x#Ł ðm"y#−m¹ "y#Ł# "4#

Cq"x\ y# � E"ðq"x#−q¹ "x#Ł ðq"y#−q¹ "y#Ł# "5#

Solutions to eqn "3# are composed of a complementary solution c"x\ y# and a particular solution
f"x\ y#[ The complementary solution can be written as follows
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c"x\ y# � f0"x#¦yf1"x#¦`0"y#¦x`1"y# "6#

where f0"x#\ f1"x#\ `0"y# and `1"y# are four arbitrary functions of their respective arguments[ Thus

Cm"x\ y# � f0"x#¦yf1"x#¦`0"y#¦x`1"y#¦f"x\ y# "7#

Note that the particular solution depends on the form of the load|s correlation function\ and is
found by the quadruple integration of the right hand side of eqn "3#[ Let us consider the special
case of the load|s correlation function that depends upon =x−y=[ This type of correlation function
is often encountered in engineering practice[ In this case the integration domain should be split
into two parts] one in which x − y and the other with x ³ y[ We _rst integrate the eqn "3# twice
with respect to x and y]

fý"u\ v# � g
v

9 g
y

9

Cq"x\ y# dy dx¦g
v

9 g
u

y

Cq"x\ y# dy dx^ for u − v "8#

The _nal form of the particular solution reads]

f"x\ y# � g
y

9 g
v

9

fý"v\ u# dv du¦g
y

9 g
x

v

fý"u\ v# dv du^ for x − y "09#

For speci_city\ here and hereinafter\ let us consider a beam that is simply supported at both its
ends[ For a beam that is clamped at x � 9 and free at x � L the pertinent derivations are given in
the Appendix[

The boundary conditions for the bending moment m"x# are]

m"9# � 9^ m"L# � 9 "00#

By taking the expectation operator\ we have

m¹ "9# � 9^ m¹ "L# � 9 "01#

For the arbitrary bending moment m"y# we obtain]

Cm"9\ y# � E"ðm"9#−m¹ "9#Ł ðm"y#−m¹ "y#Ł# � 9

Cm"L\ y# � E"ðm"L#−m¹ "L#Ł ðm"y#−m¹ "y#Ł# � 9 "02#

and similarly

Cm"x\ 9# � 9^ Cm"x\ L# � 9 "03#

The boundary conditions "02# and "03# for eqn "3# in explicit form read]

f0"9#¦yf1"9#¦`0"y#¦f"y\ 9# � 9^ f0"L#¦yf1"L#¦`0"y#¦L`1"y#¦f"L\ y# � 9

f0"x#¦`0"9#¦x`1"9#¦f"x\ 9# � 9^ f0"x#¦Lf1"x#¦`0"L#¦x`1"L#¦f"L\ x# � 9 "04#

By solving for f0"x#\ f1"x#\ `0"y# and `1"y# and noting that f"x\ 9# � f"y\ 9#\ the covariance function
becomes

Cm"x\ y# � f"x\ y#¦
xy

L1
f"L\ L#−

0
L

ðxf"L\ y#¦yf"L\ x#Ł\ for x − y "05#
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Cm"x\ y# � f"y\ x#¦
xy

L1
f"L\ L#−

0
L

ðxf"L\ y#¦yf"L\ x#Ł\ for x ¾ y "06#

Note that an analogous general form for di}erent case was obtained by Elishako} et al[ "0884#[
Once the expressions for the mean bending moment m¹ "x# and its covariance function Cm"x\ y#

are obtained a similar technique should be resorted to in order to derive the mean displacement
w¹ "x# and the displacement|s covariance function Cw"x\ y#[ Indeed\ the beam|s displacement w"x#
satis_es the following relations]

d1w"x#

dx1
� f9"x#m"x# "07#

d1w¹ "x#

dx1
� f9"x#m¹ "x# "08#

13Cw"x\ y#

1x1 1y1
� E"ð f9"x#m"x#−f9"x#m¹ "x#Ł ð f9"y#m"y#−f9"y#m¹ "y#Ł#

� f9"x# f9"y#Cm"x\ y# "19#

where the beam|s ~exibility

f9"x# �
0

EI"x#
"10#

is a deterministic function[
Note that\ for a simply supported beam loaded with distributed loading q"x#\ eqn "19# and eqn

"3# have the same type of boundary conditions[ It follows that a similar procedure to that used to
determine the covariance function of bending moment can be resorted to in order to obtain the
covariance function of displacement[ Thus\

Cw"x\ y# � x"x\ y#¦
xy

L1
x"L\ L#−

0
L

ðxx"L\ y#¦yx"L\ x#Ł\ for x − y "11#

Cw"x\ y# � x"y\ x#¦
xy

L1
x"L\ L#−

0
L

ðxx"L\ y#¦yx"L\ x#Ł\ for x ¾ y "12#

where x"x\ y# is the particular solutions of eqn "19#[

1[0[ Applications

Consider a simply supported beam with deterministic ~exibility when

q¹ "x# � Eðq"x#Ł � 9^ Cq"x\ y# � a1 exp 0−a
=x−y=

L 1 ^ f9"x# � f9 "13#

We introduce nondimensional axial coordinates] j � x:L and h � y:L^ for j − h the particular
solution of eqn "3# reads
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f"j\ h# � a1L3 0
2jh1−h2

2a
−

jh

a1
¦

j−j e−ah−h−h e−aj

a2
¦

0−e−aj−e−ah¦ea"−j¦h#

a3 1 "14#

Here and hereinafter\ the particular solution for j ¾ h can be obtained from eqn "09# by formal
replacement of j by h and h by j\ owing to symmetry in j and h[ Substituting eqn "14# in eqn "05#
the following expressions for the covariance and variance of the bending moment are obtained for
j − h

Cm"j\ h# � a1L3 $
0
2a

"1jh−2j1h¦j2h−h2¦jh2#¦
0

1a2
"−h¦jh#

¦
0

a3
"0−e−aj−e−ah¦ea"−j¦h#−j¦j e−a−ea"−0¦h#j

¦j e−ah−h¦h e−a−ea"−0¦j#h¦h e−aj¦1jh−1jh e−a#% "15#

Cm"j\ j# � a1L3 $
0
2a

"1j1−3j2¦1j3#¦
0

1a2
"−j¦j1#¦

0

a3
"1−1 e−aj

−1j¦1j e−a−1ea"−0¦j#j¦1j e−aj¦1j1−1j1 e−a#% "16#

The variance of the bending moment Cm"j\ j# coincides with the expression obtained by a di}erent
scheme by Rzhanitsyn "0867# that is valid for a particular form of the excitation[

Thus\ the present formulation contains as a particular case Rzhanitsyn|s solution[ In the present
formulation the form of the load|s mean function and load|s covariance functions is arbitrary[ For
displacement|s variance Cw"j\ j#\ from eqn "19# we get\ for a � 0

Cw"j\ j# � f 1
9a

1L7 $1−1 e−j¦
j

2
"−03¦4 e−0−4 e−0¦j¦7 e−j#

¦j1 0
12\942
2679

−
19 e−0

8
−e−j1¦j2 0−2¦

6 e−0

5
−

e−0¦j

2
¦

e−j

2 1
¦j3 0

886
439

−
02 e−0

07 1¦j4 0−
02
29

¦
e−0

5 1¦j5 0
36
169

−
e−0

07 1−
7j6

204
¦

1j7

204% "17#

Figures 0 and 1 portray the covariance and variance functions\ respectively\ for the bending
moment and the de~ection^ the value of a was _xed at unity[ Both covariance functions reach their
maxima at x � y � L:1\ due to the homogeneity of the random _elds chosen[

2[ Beam with random ~exibility represented by a random variable\ and subjected to a random

_eld load

In this case it is instructive to replace the ~exibility by the related nondimensional random
variable af\ namely
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Fig[ 0[ Probabilistic characteristics of the bending moment for a deterministic beam subjected to a random load
represented as a random _eld\ normalized by a1L3] "a# covariance function^ "b# variance function[

f"x# � f9"x#ð0¦afŁ "18#

where f9"x# is a deterministic function and af is a random variable with zero mean[ The mean and
the covariance function for the ~exibility are\ respectively\

f¹"x# � f9"x# "29#

Cf"x\ y# � f9"x# f9"y# Var ðafŁ "20#

The problem is governed by the following equations\ for uncorrelated q"x# and f"x#]
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Fig[ 1[ Probabilistic characteristics of the displacement for a deterministic beam subjected to a random load represented
as a random _eld\ normalized by f 1

9a
1L7] "a# covariance function^ "b# variance function[

d1w¹ "x#

dx1
� m¹ "x# f9"x# "21#

13Cw"x\ y#

1x1 1y1
� E"ðm"x# f"x#−m¹ "x# f9"x#Ł ðm"y# f"y#−m¹ "y# f9"y#Ł#

� Eðm"x#m"y#ŁEð f"x# f"y#Ł−m¹ "x#m¹ "y# f9"x# f9"y#

� ðCm"x\ y#¦m¹ "x#m¹ "y#Ł f9"x# f9"y#"Var ðafŁ¦0#−m¹ "x#m¹ "y# f9"x# f9"y#

� f9"x# f9"y#ðCm"x\ y#"Var ðafŁ¦0#¦m¹ "x#m¹ "y# Var ðafŁ Ł "22#

where m¹ "x# and Cm"x\ y# can be obtained by eqn "1# and "3#\ since the beam is statically determinate[



I[ Elishakoff et al[:International Journal of Solids and Structures 25 "0888# 1214Ð12391221

2[0[ Applications

Consider the following characteristics for load and ~exibility

q¹ "x# � 9^ Cq"x\ y# � a1 00¦
=x−y=

L 1 exp 0−
=x−y=

L 1 ^ f9"x# � f9 "23#

In this case the particular solution of eqn "22#\ for j − h\ reads

x"j\ h# � f 1
9a

1L7"Var ðafŁ¦0#"x0"j\ h#¦x1"j\ h## "24#

The functions x0 and x1 are not reproduced here[
We obtain the following expression for the variance of the displacement

Cw"j\ j# � f 1
9a

1L7"Var ðafŁ¦0# $07−07 e−j¦
j

2
"−005¦41 e−0−41 e−0¦j

¦51 e−j#¦j1 0
25\070
645

−11 e−0¦
4 e−0¦j

2
−

02 e−j

2 1¦j2 0−08¦
18 e−0

2

−
7 e−0¦j

2
¦

3 e−j

2 1¦j3 0
4858
439

−
06 e−0

2
¦

e−0¦j

2
¦

e−j

2 1−j4 0−
08
09

¦e−01
¦j5 0

076
169

−
e−0

2 1−
05j6

204
¦

3j7

204% "25#

Figure 2 shows the normalized variance and covariance functions for the transverse displacement
for a simply supported beam in the case Var ðafŁ � 0[

3[ Beam with random _eld ~exibility\ and subjected to a loading depending on a random variable

Let the general expression for the load q"x# be

q"x# � aqP"x# "26#

where P"x# is a deterministic function and aq is a random variable[ The mean load equals

q¹ "x# � EðaqŁP"x#^ Cq"x\ y# � P"x#P"y# Var ðaqŁ "27#

Let the general form for the ~exibility be

f"x#¦f9"x#ð0¦af"x#Ł "28#

Note that eqn "28# is analogous to eqn "18# except that in new circumstances af"x# is a random
_eld with zero mean[ Hence

f¹"x# � f9"x#^ Cf"x\ y# � f9"x# f9"y#Caf
"x\ y# "39#
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Fig[ 2[ Probabilistic characteristics of the displacement for a beam with random ~exibility represented by a random
variable and subjected to a random load represented as a random _eld\ normalized by f 1

9a
1L7"Var ðafŁ¦0#] "a# covariance

function^ "b# variance function[

Since in this case Cq"x\ y# is a separable function of x and y\ eqn "3# can be solved straightforwardly[
We obtain

m¹ "x# � EðaqŁM"x# "30#

Cm"x\ y# � M"x#M"y# Var ðaqŁ "31#

where

M"x# � −g
x

9 g
v

9

P"u# du dv¦Q9x¦M9 "32#



I[ Elishakoff et al[:International Journal of Solids and Structures 25 "0888# 1214Ð12391223

represents the bending moment of a beam loaded with P"x#^ M9 and Q9 are\ respectively\ the
bending moment and shear force at the end x � 9 of the beam[

The governing equations for w¹ "x# and Cw"x\ y# for uncorrelated q"x# and f"x# become

d1w¹ "x#

dx1
� EðaqŁM"x# f9"x# "33#

13Cw"x\ y#

11x1 1y1
� E"ð f"x#m"x#−f9"x#EðaqŁM"x#Łð f"y#m"y#−f9"y#EðaqŁM"y#Ł#

� Eð f"x# f"y#ŁEðm"x#m"y#Ł−f9"x# f9"y#M"x#M"y#EðaqŁ1

� f9"x# f9"y#"Caf
"x\ y#¦0#M"x#M"y#"Var ðaqŁ¦EðaqŁ1#

−f9"x# f9"y#M"x#M"y#EðaqŁ1

� M"x#M"y# f9"x# f9"y#ðVar ðaqŁ"Caf
"x\ y#¦0#¦EðaqŁ1Caf

"x\ y#Ł "34#

3[0[ Applications

Consider the following characteristics for load and ~exibility

P"x# � P9^ EðaqŁ � 9^ f9"x# � f9^ Caf
"x\ y# � exp 0−

=x−y=
L 1 "35#

In this case the particular solution of eqn "34#\ for j − h\ reads

x"b\ h# � f 1
9P

1
9 Var ðaqŁ $7−7 e−j−7 e−h¦7 e−j¦h−1h−2h e−j−5h e−h−4 e−j¦hh

−1h1 e−h¦ e−j¦hh1−
h2

5
¦

h3

2
−

6h4

39
¦

h5

29
−

h6

73
¦j"2−5 e−j−2 e−h¦5 e−j¦h

−
2h

3
−

8h e−j

3
−

8h e−h

3
−

04 e−j¦h

3
−

2h1 e−h

3
¦

2 e−j¦hh1

3
−

h2

5
¦

h3

7
−

h4

19
¦

h5

591

¦j1 0−1 e−j¦1 e−j¦h−
2h e−j

3
−

4 e−j¦hh

3
¦

e−j¦hh1

3 1

¦j2 0
h2

033
−

h3

1771¦j3 0
−h2

177
¦

h3

4651% "36#

Substituting in eqn "11# we obtain the following expression for the variance of the displacement
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Cw"j\ j# � f 1
9P

1
9 Var ðaqŁ $05−05 e−j¦j"−19¦21 e−0−21 e−0¦j¦3 e−j#

¦j1 0
396\916
19\059

−21 e−0¦19 e−0¦j¦7 e−j1¦j2 0−
1
2

−3 e−0¦j¦3 e−j1
¦

044j3

033
−

0276j4

0339
¦

206j5

619
−

092j6

0997
¦

092j7

3921 % "37#

Figure 3 shows Cw"x\ y# and Cw"x\ x# in the case Var ðaqŁ � 0[

Fig[ 3[ Probabilistic characteristics of the displacement for a beam with random ~exibility and subjected to a load
depending on a random variable\ normalized by f 1

9P
1
9L7] "a# covariance function^ "b# variance function[
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4[ Beam with uncorrelated random ~exibility and random load

Let us consider now the case when both the ~exibility f"x# and the load q"x# are represented as
random _elds[ Mean and covariance functions for the moment again satisfy eqns "1# and "3#[ Their
counterparts for the displacement satisfy the following di}erential equation

d1w¹ "x#

dx1
� m¹ "x# f¹"x# "38#

13Cw"x\ y#

1x1 1y1
� E"ðm"x# f"x#−m¹ "x# f¹"x#Ł ðm"y# f"y#−m¹ "y# f¹"y#Ł#

� Eðm"x#m"y#ŁEð f"x# f"y#Ł−m¹ "x#m¹ "y# ff¹"x# f¹"y#

� ðCm"x\ y#¦m¹ "x#m¹ "y#Ł ðCf"x\ y#¦fÞ"x# fÞ"y#Ł−m¹ "x#m¹ "y# f¹"x# f¹"y#

� Cm"x\ y#ðCf"x\ y#¦f¹"x# f¹"y#Ł¦Cf"x\ y#m¹ "x#m¹ "y# "49#

4[0[ Applications

Consider the ~exibility given in eqns "28#Ð"39#[ Then eqns "38#Ð"49# take the following forms\
respectively\

d1w¹ "x#

dx1
� m¹ "x# f9"x# "40#

13Cw"x\ y#

1x1 1y1
� f9"x# f9"y#ðCm"x\ y#"Caf

"x\ y#¦0#¦Caf
"x\ y#m¹ "x#m¹ "y#Ł "41#

Consider the following characteristics for load and ~exibility

Eðq"x#Ł � 9^ Cq"x\ y# � a1 00−
=x−y=

L 1 ^ f9"x# � f9^ Caf
"x\ y# � exp 0−

=x−y=
L 1 "42#

In this case the particular solution of eqn "49#\ for j − h reads

x"j\ h# � f 1
9a

1L7"x0"j\ h#¦jx1"j\ h#¦j2"j\ h## "43#

The functions x0\ x1 and x2 are not reproduced here[
We obtain the following expression for the variance of the displacement

Cw"j\ j# � f 1
9a

1L7 $
137
04

−
137 e−j

04
¦j 0−

086
04

¦
075 e−0

4
−

075 e−0¦j

4
−

06 e−j

4 1
¦j1 0

347\138
018\599

−
075 e−j

4
¦

233 e−0¦j

04
¦

293 e−j

04 1¦j2 0
0708
89

−
02 e−0¦j

2
−e−j1
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¦j3 0−
52\782
4939

¦
7 e−0¦j

2
¦

e−j

2 1¦j4 0
7462
1699

−
1 e−0¦j

2
¦

3 e−j

04 1
¦j5 0−

15\192
10\599

¦
e−0¦j

04
¦

e−j

04 1¦
0982j6

6459
−

2980j7

59\379
¦

070j8

07\033
−

070j09

89\619% "44#

Figure 4 portrays the exact solution for this case[ Note that if the beam|s ~exibility is deterministic
we have to substitute Caf"x\ y# � 9[ Then eqn "41# reduces to eqn "19#[ In the case of the ~exibility
depending on a random variable\ i[e[ af"x# � af\ the eqn "41# reduces to eqn "22#[ Finally\ if
~exibility is represented as a random _eld and the load depends on a random variable aq\ as in eqn
"26#\ then

Fig[ 4[ Probabilistic characteristics of the displacement for a beam with uncorrelated random ~exibility and random
load\ normalized by f 1

9a
1
9L7] "a# covariance function^ "b# variance function[
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Fig[ 5[ Comparison of the response variance of the beam\ under random loading of unit variance\ for various rep!
resentations of the ~exibility] "a# deterministic ~exibility^ "b# ~exibility represented as a random variable^ "c# ~exibility
represented as a random _eld[

m¹ "x# � EðaqŁM"x#^ Cm"x\ y# � M"x#M"y# Var ðaqŁ "45#

and eqn "41# reduces to eqn "34#[
Figure 5 shows a comparison of the response variance of the beam\ for various representations

of the ~exibility[

5[ Conclusion

Four di}erent classes of problems for deformation of the BurnoulliÐEuler beams\ involving
stochastic ~exibility and load\ are considered in this study[ New exact solutions are derived for the
probabilistic characteristics of the beam|s bending moment and displacement[ The solutions are
obtained by _rst appropriate di}erential equations and boundary conditions[ The derived exact
solutions can serve as benchmark problems] various approximate and numerical solutions\ includ!
ing the _nite element method\ can be confronted with the derived benchmark solutions[

Appendix] Stochastic clamped!free beam under stochastic loading

If the beam is clamped at x � 9 and free at x � L and is subjected to a load q"x#\ the governing
equations for the bending moment are given by eqns "1#Ð"3#[ The boundary conditions read
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m"L# � 9^
dm"L#

dx
� m?"L# � 9 "A0#

For an arbitrary bending moment m"y#\ we obtain

Cm"L\ y# � E"ðm"L#−m¹ "L#Ł ðm"y#−m¹ "y#Ł# � 9

1Cm"L\ y#
1x

� E"ðm?"L#−m¹ ?"L#Ł ðm"y#−m¹ "y#Ł# � 9 "A1#

Similarly

Cm"x\ L# � 9^
1Cm"x\ L#

dy
� 9 "A2#

The boundary conditions "A1#\ "A2# in explicit form become\ after substituting into eqn "7#\

f0"L#¦yf1"L#¦`0"y#¦L`1"y#¦f"L\ y# � 9^ f ?0"L#¦yf ?1"L#¦`1"y#¦f0"L\ y# � 9

f0"x#¦Lf1"x#¦`0"L#¦x`1"L#¦f"L\ x# � 9^ f1"x#¦`?0"L#¦x`?1"L#¦f0"L\ x# � 9
"A3#

One _rst determines f1"x# from the fourth equation^ the third equation then yields f0"x# after
substituting f1"x# into it^ the second equation yields `1"y#\ whereas the _rst equation yields `0"y#[

The solution of covariance function becomes

Cm"x\ y# � f"x\ y#−f"L\ x#−f"L\ y#¦"L−y#f0"L\ x#¦"L−x#f0"L\ y#¦f"L\ L#

¦"L−x#"L−y#f01"L\ L#−"L−x#f0"L\ L#−"L−y#f0"L\ L#\ for x − y "A4#

Cm"x\ y# � f"y\ x#−f"L\ x#−f"L\ y#¦"L−y#f0"L\ x#¦"L−x#f0"L\ y#¦f"L\ L#

¦"L−x#"L−y#f01"L\ L#−"L−x#f0"L\ L#−"L−y#f0"L\ L#\ for x ¾ y "A5#

where

f0"u\ v# �
1f"u\ v#

1u
^ f1"u\ v# �

1f"u\ v#
1v

^ f01"u\ v# �
11"u\ v#
1u 1v

"A6#

To obtain boundary conditions for the covariance function we _rst note that the boundary
conditions for displacement for the beam are]

w"9# � 9^ w?"9# � 9 "A7#

For an arbitrary displacement w"y#\ we have

Cw"9\ y# � E"ðw"9#−w¹ "9#Ł ðw"y#−w¹ "y#Ł# � 9

1Cw"9\ y#
1x

� E"ðw?"9#−w¹ ?"9#Ł ðw"y#−w¹ "y#Ł# � 9 "A8#

Similarly
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Cw"x\ 9# � 9^
1Cw"x\ 9#

dy
� 9 "A09#

In explicit form boundary conditions "A8#\ "A09# read

F0"9#¦yF1"9#¦G0"y#¦x"y\ 9# � 9^ F0"x#¦G0"9#¦xG1"9#¦x"x\ 9# � 9

F?0"9#¦yF?1"9#¦G1"y#¦x1"y\ 9# � 9^ F1"x#¦G?0"9#¦xG?1"9#¦x1"x\ 9# � 9 "A00#

By solving for F0"x#\ F1"x#\ G0"y# and G1"y# the solution of covariance function becomes

Cw"x\ y# � x"x\ y#−x"x\ 9#−x"y\ 9#−xx1"y\ 9#−yx1"x\ 9#

¦x"9\ 9#¦xyx01"9\ 9#¦xx0"9\ 9#¦yx0"9\ 9#\ for x − y "A01#

Cw"x\ y# � x"y\ x#−x"x\ 9#−x"y\ 9#−xx1"y\ 9#−yx1"x\ 9#

¦x"9\ 9#¦xyx01"9\ 9#¦xx0"9\ 9#¦yx0"9\ 9#^ for x ¾ y "A02#

where

x0"u\ v# �
1x"u\ v#

1u
^ x1"u\ v# �

1x"u\ v#
1v

^ x01"u\ v# �
11x"u\ v#

1u 1v
"A03#
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