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Abstract

Presently there exist several hundred papers on so-called ‘stochastic finite element technique’ but extremely
few closed-form solutions are available for meaningful comparison. This paper intends to fill this huge gap.

This study deals with deformation of deterministic beams or stochastic beams subjected to random
excitation. Exact solutions are formulated for four different classes of problems. These solutions can serve
as benchmark solutions to be utilized for assessing the performance of various approximate, analytical or
numerical techniques. © 1999 Elsevier Science Ltd. All rights reserved.

1. Introduction

Exact solutions for the bending of deterministic beams under random loads were treated by
Lomakin (1996), Rzhanitsyn (1977, 1978) and Elishakoftf (1983). Exact solutions for beams with
stochastic stiffness were studied by Koyliioglu et al. (1994) and Elishakoff et al. (1995). Elishakoff
et al. (1995) treated stochastic beams under deterministic excitation with arbitrary covariance
function of the stochastic flexibility, whereas Koylioglu et al. (1994) considered a case of both
loading and stiffness being stochastic. The latter paper used the concept of the Green’s function
and the spatial spectral densities, whereas the former contained a correlation analysis.

Formulation of Koyliioglu et al. is convenient when the random flexibility is given in terms of
the spatial spectral density which is identically vanishing outside some region of spatial frequencies.
In other cases, the correlation analysis performed by Elishakoff et al. (1995) appears to be
advantageous.

Here we present derivation for the probabilistic characteristics of the beam’s bending moment
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and displacement through first establishing stochastic differential equations, governing the beam’s
displacement. The treatment necessitates knowledge of characteristics of deterministic or random
flexibility throughout analysis, rather than those of stiffness. Following special cases are considered:
(a) deterministic beam under random loading represented as a random field; (b) stochastic beam
with flexibility depending on a random variable subjected to a load treated as a random field; (c)
beam with random flexibility represented as a random field subjected to a random load depending
on a random variable, and, finally, (d) a stochastic beam subjected to a load with both flexibility
and load treated as random fields. It is shown that the previous analyses by Rzhanitsyn (1978)
and Elishakoff et al. (1955) are particular cases of the present formulation. Most importantly, the
nontrivial examples presented could be used for meaningful comparison of the FEM’s stochastic
version with closed-form solutions developed in the present paper.

2. Deterministic beam under random load represented as a random field

The field of bending moment m(x) of a statically determined Beurnoulli—-Euler beam of length
L, subject to distributed load ¢(x) satisfies the following differential equation:

d?m(x)

dx?

=q(x) M
Assume that the load ¢g(x) is a random field with a given mean and covariance function. By
applying expectation operation to eqn (1), we obtain

d*m(x)

dx?

= q(x) )

where m(x) = E[m(x)] is the mean function of the bending moment m(x), and §(x) = E[q] is the
mean function of the load. Subtracting eqn (2) from eqn (1) and multiplying the resulting equation
by its counterpart that is evaluated at the cross-section y, we obtain

d?[m(x) —m(x)] d*[m(y) —m(y)]
dx? dy?

= [¢(x) —q()] [9(») —q(y)] (€)

Applying expectation operation to eqn (3), we arrive at the governing equation for the covariance
function of bending moment

where C,(x,y) and C,(x, y) are, respectively, covariance function of bending moment and load:
C,(x,y) = E{[m(x) —m(x)] [m(y) —m(y)]} (5)
Cy(x,y) = E{[q(x) —q(x)] [¢(») —q()]} (6)

Solutions to eqn (4) are composed of a complementary solution ¥(x, y) and a particular solution
¢(x,y). The complementary solution can be written as follows
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Y(x,y) = /1) +H(0) +9,1 (1) +x9,(») (7
where f,(x), f>(x), g:(») and g,(y) are four arbitrary functions of their respective arguments. Thus
Co(x, ) = /1 () + () +91 (1) +x92(y) + P(x, ) ®)

Note that the particular solution depends on the form of the load’s correlation function, and is
found by the quadruple integration of the right hand side of eqn (4). Let us consider the special
case of the load’s correlation function that depends upon |x— y|. This type of correlation function
is often encountered in engineering practice. In this case the integration domain should be split
into two parts: one in which x > y and the other with x < y. We first integrate the eqn (4) twice
with respect to x and y:

v

¢"(u,v) = f JV C,(x,y)dy dx+J Ju C,(x,y)dydx; foruz=v 9

0 Jo 0 J)

The final form of the particular solution reads:

0 JO 0

¢(x,y) = Jl JL ¢" (v, u) dvdu+ f Jx ¢"(u,v)ydvdu; forx =y (10)

For specificity, here and hereinafter, let us consider a beam that is simply supported at both its
ends. For a beam that is clamped at x = 0 and free at x = L the pertinent derivations are given in

the Appendix.
The boundary conditions for the bending moment m(x) are:
m(0) =0; m(L) =0 (11)
By taking the expectation operator, we have
m0) =0; m(L) =0 (12)

For the arbitrary bending moment () we obtain:
C,,(0,) = E{[m(0) —m(0)] [m(y) —m(y)]} =0

C,(L,y) = E{[m(L)—m(L)] [m(y) —m(y)]} =0 (13)
and similarly
C,(x,00=0; C,(x,L)=0 (14)

The boundary conditions (13) and (14) for eqn (4) in explicit form read:
HO)+240)+9: () +0(r,0) =05 fi(L)+2/-2(L)+9, () +Lg(»)+ (L, y) =0
S1(x)+91(0)+x9,(0) +¢(x,0) = 0; /1 (x)+Lf>(x) +91 (L) +xg,(L) + p(L, x) =0 (15)

By solving for f,(x), f>(x), g,(y) and g,(y) and noting that ¢(x, 0) = ¢(y,0), the covariance function
becomes

1
Co(x,y) = (x,»)+ %ML, L)— z[qu(L, V) +yé(L,x)], forx =y (16)
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1
Colx.3) = B3+ S (L L) = | [¥O(Ly) +y9(L )], forx <y (a7

Note that an analogous general form for different case was obtained by Elishakoff et al. (1995).

Once the expressions for the mean bending moment 72(x) and its covariance function C,,(x, y)
are obtained a similar technique should be resorted to in order to derive the mean displacement
w(x) and the displacement’s covariance function C,(x,y). Indeed, the beam’s displacement w(x)
satisfies the following relations:

) _ e om) (18)
dx

) _ 4 o) (19)
dx

0*C,.(x, . . i .

ax(;yy) = E{Lfo (9m) —fo (] Lo (r)m(3) —fo G)m()]}

) fo (D C (5, ) (20)
where the beam’s flexibility
i 1
5= @1

is a deterministic function.

Note that, for a simply supported beam loaded with distributed loading ¢(x), eqn (20) and eqn
(4) have the same type of boundary conditions. It follows that a similar procedure to that used to
determine the covariance function of bending moment can be resorted to in order to obtain the
covariance function of displacement. Thus,

Xy 1

Cw(xay) = X(xay)+ EX(Lv L)_ Z[XX(Lay) +yX(L5 X)], forx = y (22)
Xy 1

C,(x,») = x(y,x)+ EX(L, L)— 7 [xx (L, y)+yx(L,x)], forx <y (23)

where % (x, y) is the particular solutions of eqn (20).

2.1. Applications

Consider a simply supported beam with deterministic flexibility when

|x—yl
L

g(x) = Elg(x)] = 0;  C,(x,y) = a’exp (—OC >; Jo(x) = 1o (24)

We introduce nondimensional axial coordinates: & = x/L and n = y/L; for & > n the particular
solution of eqn (4) reads
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3En2 —p? e M_p_pe - |—e g M 4 eH—Etn

pem =ars (B S Smee TENTNE T 03)
30( OC2 063 OC4

Here and hereinafter, the particular solution for ¢ < 5 can be obtained from eqn (10) by formal

replacement of ¢ by # and n by £, owing to symmetry in £ and 7. Substituting eqn (25) in eqn (16)

the following expressions for the covariance and variance of the bending moment are obtained for

E=n

Cn(&n) =a’L? [31()((2611—36211%311—173 +&n) + 2;3(—17%11)

+ ;4(1 —e N —e M4 et —Ep femr—e T HE

+le M —ntne =T e +28n—28n e“)] (26)
(&) = aL* [3;(252 482 (R 226

—2842¢e =20 IHIELDE T 4282 282 e“)} (27)

The variance of the bending moment C,,(&, &) coincides with the expression obtained by a different
scheme by Rzhanitsyn (1978) that is valid for a particular form of the excitation.

Thus, the present formulation contains as a particular case Rzhanitsyn’s solution. In the present
formulation the form of the load’s mean function and load’s covariance functions is arbitrary. For
displacement’s variance C, (¢, &), from eqn (20) we get, for oo = 1

C,(¢ & =fia* Lt [2—2ei+§(—14+5e1—561+5+865)
2 23,053 20e”' & ; Je ! e !t e ¢
telammo — 9 T )t e T T

997 13e7! 13 ¢! 47 e! geT &8

O 5 T - 6(__~ -  \_ —= ==
e <540 I8 )Jré < 3076 )“Z (270 18) 315 315} (28)
Figures 1 and 2 portray the covariance and variance functions, respectively, for the bending

moment and the deflection; the value of o was fixed at unity. Both covariance functions reach their
maxima at x = y = L/2, due to the homogeneity of the random fields chosen.

3. Beam with random flexibility represented by a random variable, and subjected to a random
field load

In this case it is instructive to replace the flexibility by the related nondimensional random
variable o, namely
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Fig. 1. Probabilistic characteristics of the bending moment for a deterministic beam subjected to a random load
represented as a random field, normalized by «°L*: (a) covariance function; (b) variance function.

Jx) =fo()[1 + o] (29)

where f;(x) is a deterministic function and «,is a random variable with zero mean. The mean and
the covariance function for the flexibility are, respectively,

Jx) = fo(x) (30)
Ci(x, y) = fo(x) fo () Var [o] (31)

The problem is governed by the following equations, for uncorrelated ¢(x) and f{(x):
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Fig. 2. Probabilistic characteristics of the displacement for a deterministic beam subjected to a random load represented
as a random field, normalized by f2a”Lg: (a) covariance function; (b) variance function.

) o £y )
dx?

0*C,

e (axyy ) = {0 10— m(0 /o) 1) ) =) o)1)

= E[m(x)m(N]ELf(x) fN] —m(x)m(y) fo(x) fo ()
= [Con(x, y) +m(x)m(y)] fo (x) fo () (Var [o] + 1) —m(x)m(y) fo (x) fo (¥)
= Jo () foMIC(x, ) (Var [o] + 1) +rm(x)rm(y) Var [oy] ] (33)

where 2(x) and C,,(x, y) can be obtained by eqn (2) and (4), since the beam is statically determinate.
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3.1. Applications

Consider the following characteristics for load and flexibility

00 =0: ey = (145 Moo (<2 fieo =, (34)

In this case the particular solution of eqn (33), for & = #, reads

1(&m) = fia* L* (Var [o] + 1) (0 (&, m) +x2(Em) (35)

The functions y, and y, are not reproduced here.
We obtain the following expression for the variance of the displacement

C.(& &) = foa’L¥(Var [o]+ 1) [18—18 e ¢+ g(—116+52e1 —52¢e"1t¢

, 36,181 St 13e¢ 29¢-!
+62e‘<)+£2< ety 28 0 >+¢3<—19+ ©

756 3 3 3
Bem! 0 deTf\ (969 17ent en ey (19
3 3 540 3 373 10"
187 e '\ 16¢7  4&
o (187 e\ 4
e <27o 3 ) 315 +315} -

Figure 3 shows the normalized variance and covariance functions for the transverse displacement
for a simply supported beam in the case Var [a] = 1.

4. Beam with random field flexibility, and subjected to a loading depending on a random variable

Let the general expression for the load ¢(x) be

q(x) = a,P(x) (37)
where P(x) is a deterministic function and «, is a random variable. The mean load equals

q(x) = Ela,]P(x); C,(x,y) = P(x)P(y) Var [«,] (38)
Let the general form for the flexibility be

J)+fo (O +a(x)] (39)

Note that eqn (39) is analogous to eqn (29) except that in new circumstances o,(x) is a random
field with zero mean. Hence

S =10(x); Clx,¥) = fo(%) fo (1) Co (. ) (40)
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Fig. 3. Probabilistic characteristics of the displacement for a beam with random flexibility represented by a random
variable and subjected to a random load represented as a random field, normalized by f3a* Ls(Var [o] + 1): () covariance
function; (b) variance function.

Since in this case C,(x, y) is a separable function of x and y, eqn (4) can be solved straightforwardly.
We obtain

m(x) = Ela,]JM(x) 41)
C,(x,y) = M(x)M(y) Var [o,] (42)
where

0 Jo

M(x) = —Jx JP P(u)dudv+Qox+ M, (43)
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represents the bending moment of a beam loaded with P(x); M, and Q, are, respectively, the
bending moment and shear force at the end x = 0 of the beam.
The governing equations for w(x) and C,(x, y) for uncorrelated ¢g(x) and f(x) become
d*w(x) :
o Elot, JM(x) fo (x)

(44)

0*C,(x,)
P E{[f(x)m(x) —fo (x) E[ot IM )]/ (y)m(p) — fo (») Elo, JM ()]}

= E[f(x) fIEm(x)m(»)] —fo (x) fo (0) M(x) M () E[ot,]?

= fo(x) fo(N(C,(x,p) + DM (x) M (y) (Var [o,] + E[or,]*)

—fo(X) fo () M(x) M (p) E[o, ]

= M(x)M(p) fo(x) fo(W[Var [2,](C,, (x, ) + 1) + E[er, 1> C, (x, )] (45)

4.1. Applications

Consider the following characteristics for load and flexibility

P(x) = Py;  Ele,] =0; fo(x) = fo; Cz/»(an) = exp (_ |x_y|>

B (46)

In this case the particular solution of eqn (45), for £ > #, reads

x(B.n) = f5P5 Var [o,] |:8—8e:—86"—#865+"—2l’]—31’]€é—61’]€"—565+"1’]

i 3 4 7 5 6 7
—2pPe T+ e Iyt — % + % S B

_ _ —&_ -1 =&+
20 T30 84+é(3 6¢ e "+6e

_3n 9 et _ 9ne” 15e<+tn B 3te ™ 3e cty?

noont o
17 4 4 T 4 4 T4 T 6T 8s T 20 60

4 s T
3 4 3 4
s( MM\ (T
e <144 288>+5 <288 +576>} “7)

Substituting in eqn (22) we obtain the following expression for the variance of the displacement

+& <_2ef+2ef+n _neTt e 6“"’72)
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Figure 4 shows C,(x,y) and C,(x, x) in the case Var[o ] = 1.
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Fig. 4. Probabilistic characteristics of the displacement for a beam with random flexibility and subjected to a load
depending on a random variable, normalized by f3P3Lg: (a) covariance function; (b) variance function.
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5. Beam with uncorrelated random flexibility and random load

Let us consider now the case when both the flexibility f(x) and the load ¢(x) are represented as
random fields. Mean and covariance functions for the moment again satisfy eqns (2) and (4). Their
counterparts for the displacement satisfy the following differential equation

dzw(zx) = m(x) f(x) (49)
dx

3*C,(x, _ _

7@; ((;yzy - E{[m(x) f(x) —m(x) f(x)] [m() f(») —m(p) f(0]}

= E[m(x)m(MIELf(x) f(»)] —m(x)m(y) f(x) f(»)
= [C,,(x, ) +m(x)m(N] [C/(x, ) +/(x) ()] = m(x)m(y) f(x) f()
= G, (x, D[CAx, ») +](x) f()] + Co(x, p)m(x)m(y) (50)

5.1. Applications

Consider the flexibility given in eqns (39)—(40). Then eqns (49)—(50) take the following forms,
respectively,

d?w(x)

= = () fo(x) ey
dx

0'C,(x,

(%cz((;/zy) = (fO (x)fO (Y)[Cm (X, y)(Coc/(xﬂ y) + 1) + C“/(x’ y)m(x)m(y)] (52)

Consider the following characteristics for load and flexibility

Ayl =0 G = (1=F7N = —en (<P o

In this case the particular solution of eqn (50), for £ > # reads

1(&m) = f3a L* (i (& m) + Exa (Em) + 87 (Em) (34)

The functions 7, %, and y; are not reproduced here.
We obtain the following expression for the variance of the displacement

248  248¢¢ < 197 186e~' 186e '*¢ 17e§>

C' — 2 2L8 - - o
+(&¢) =Joa [15 15 517 s 5 5

, (458,249 186e° 3dde '*¢ 304e~F\ /1819 13e 't
¢ - + + — —e—¢
129,600 5 15 15 90 3



I. Elishakoff et al./International Journal of Solids and Structures 36 (1999) 2325-2340 2337
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Figure 5 portrays the exact solution for this case. Note that if the beam’s flexibility is deterministic
we have to substitute C,(x,y) = 0. Then eqn (52) reduces to eqn (20). In the case of the flexibility
depending on a random variable, i.e. a{x) = o, the eqn (52) reduces to eqn (33). Finally, if
flexibility is represented as a random field and the load depends on a random variable o,, as in eqn
(37), then

¥/L

3.= C.4 .5 G.3 1
Fig. 5. Probabilistic characteristics of the displacement for a beam with uncorrelated random flexibility and random
load, normalized by f3a?L: (a) covariance function; (b) variance function.
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Fig. 6. Comparison of the response variance of the beam, under random loading of unit variance, for various rep-

resentations of the flexibility: (a) deterministic flexibility; (b) flexibility represented as a random variable; (c) flexibility
represented as a random field.

m(x) = E[e,JM(x);  C,(x,y) = M(x)M(y) Var [o,] (56)

and eqn (52) reduces to eqn (45).
Figure 6 shows a comparison of the response variance of the beam, for various representations
of the flexibility.

6. Conclusion

Four different classes of problems for deformation of the Burnoulli-Euler beams, involving
stochastic flexibility and load, are considered in this study. New exact solutions are derived for the
probabilistic characteristics of the beam’s bending moment and displacement. The solutions are
obtained by first appropriate differential equations and boundary conditions. The derived exact
solutions can serve as benchmark problems: various approximate and numerical solutions, includ-
ing the finite element method, can be confronted with the derived benchmark solutions.

Appendix: Stochastic clamped-free beam under stochastic loading

If the beam is clamped at x = 0 and free at x = L and is subjected to a load ¢(x), the governing
equations for the bending moment are given by eqns (2)—(4). The boundary conditions read
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dm(L) Sy
dx =m'(L) =0 (A1)

m(L) = 0;

For an arbitrary bending moment m(y), we obtain

Co(L,y) = E{[m(L) —m(L)] [m(y) —m(»)]} =0
0C,(L,y)

C 2 — (o (L) = (L)] () — ()] = 0 (A2)
Similarly
C,(x,L)=0; 8C,,,(§;C,L) =0 (A3)

The boundary conditions (A2), (A3) in explicit form become, after substituting into eqn (8),
H D) +yf(L)+9:(0) +Lg (M) + (L, y) =05 1L+ 2(L)+9.(»)+ i1 (L, y) =0

S1X)+ L) +91(L) +x9:(L) + (L, x) =05 fo(x)+91 (L) +xg5(L) + ¢ (L, x) = 0
(Ad)

One first determines f,(x) from the fourth equation; the third equation then yields f,(x) after
substituting f,(x) into it; the second equation yields g,(y), whereas the first equation yields g,(y).
The solution of covariance function becomes

Co(x,y) = ¢(x,») = (L, X) = (L, y) + (L =) (L, x) + (L=x)$, (L, y) + ¢(L, L)
+(L—=X)(L=y)p12(L, L) = (L=x)$\ (L, L) = (L=y)p: (L, L), forx=y (A5)
Co(x,y) = (1, X) =P (L, x) = (L, y) + (L= ), (L, x) + (L—=x) ), (L, y) + (L, L)
+(L=X)(L=y)p12(L, L) = (L=x)$\ (L, L) = (L=y)p: (L, L), forx<y (A0)
where

op(u,v)
ou

_ 0¢(u,v)

0% (u,
(]52(7/{, U) - 01) s = (u U)

(]512(”,0)— auav

b1 (u,0) = (A7)

To obtain boundary conditions for the covariance function we first note that the boundary
conditions for displacement for the beam are:
w(0) =0; w'(0)=0 (A8)
For an arbitrary displacement w(y), we have

C.(0,y) = E{[w(0) = w(O)] [w(») —w(»]} =0

8C,. (0,
a(xy) = E{[w(0) = (0)] [w(») —w(»)]} =0 (A9)

Similarly
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dC,(x,0)
dy
In explicit form boundary conditions (A9), (A10) read
Fi(0)+yF,(0)+G,(»)+x(»,0) =0; F,(x)+G,(0)+xG,(0)+y%(x,0) =0
Fi0)+yF30)+ G2 (») +72(1,0) =0, F>(x)+G71(0) +xG5(0) + %2 (x,0) = 0 (A1)

By solving for F(x), F,(x), G,(») and G,(») the solution of covariance function becomes

C,(x,0) = 0; 0 (A10)

Cy(x,3) = x(x, 1) —x(x, 0) =% (¥, 0) = x%2 (¥, 0) = ¥x2 (x, 0)

+%(0,0) +xy%1,(0,0) +x%,(0,0)+yx;(0,0), forx=yp (Al12)
Co(x,p) = x (¥, x) = x(x, 0) =% (¥, 0) —xx2 (¥, 0) = yx2 (x, 0)

+%(0,0) +x%12(0,0) +x%,(0,0) + %, (0,0); forx <y (Al3)

where

oy (u,v) _ Oy (u,v) 0%y, v)

X1 (u’ U) = au Xz (u7 U) av s XlZ (u5 U) - au av (A14)

Acknowledgements

I. Elishakoff acknowledges support by the National Science Foundation (Program Director: Dr
K. P. Chong; Award MSM-90 15371). The study was conducted when N. Impollonia was a Visiting
Research Scholar at the Department of Mechanical Engineering of the Florida Atlantic University
under the auspices of the University of Messina, Italy. This support is gratefully appreciated. Any
opinions, findings and recommendations expressed by this publication are those of the authors
and do not necessarily reflect the views of the sponsors.

References

Abell, M.L., Braselton, J.P., 1992. The Mathematica Handbook. AP Professional, Cambridge.

Elishakoff, 1., 1983. Probabilistic Methods in the Theory of Structures. John Wiley and Sons, New York.

Elishakoff, I., Ren, Y.J., Shinozuka, M., 1995. Some exact solutions for the bending of beams with spatially stochastic
stiffness. Int. J. Solids Structures 16, 2135-2327.

Koylioglu, H.U., Camak, A.S., Nielsen, S.A.K., 1994. Response of stochastically loaded Bernoulli-Euler beams with
randomly varying bending stiffness. In: Schuéller, G.I., Shinozuka, M., Yao, J.T.P. (Eds.), Structural Safety and
Reliability. Balkema, Rotterdam.

Lomakin, V.A., 1966. Strength and stiffness calculation of the beam bent under a random load. Mechanics of Solids 4,
162-164.

Rzhanitsyn, A.R., 1977. Probabilistic Calculation of Beams on a Random Load. Vol. 23, “Stroizdat” Publ. House,
Moscow, USSR (in Russian).

Rzhanitsyn, A.R., 1978. Theory of Reliability Analysis of Building Structures. “Stroizdat” Publ. House, Moscow,
USSR (in Russian).

Wolfram, S., 1996. Mathematica, A System for Doing Mathematics by Computer. Cambridge University Press.



